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libCEED Overview
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What is libCEED?

• C library for element-based discretizations
• Bindings available for Fortran, Rust, Python, and Julia

• Designed for matrix-free operator evaluation
• Portable to different hardware via computational backends

• Code that runs on CPU also runs on GPU without changes
• Computational backend selectable at runtime, using runtime compilation

• Geared toward high-order finite element discretizations
• Performance demonstrated for solids in Brown et al. 20221

• Want to apply those methods and lessons-learned to fluids

1Performance Portable Solid Mechanics via Matrix-Free p-Multigrid, Brown et al., arXiv:2204.01722
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Finite Element Operator Decomposition
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Compressible Fluid Equations in
libCEED
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Compressible Navier-Stokes
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Compressible Navier-Stokes for Continuous-Galerkin FEM

Find Y ∈ Sh , ∀v ∈ Vh∫
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Efficient Implicit Timestepping
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Implicit Timestepping

Implicit timestepping requires solving:

dG(Y,t,Y )

dY
∆Y = −G(Y,t,Y )

• System too large for direct solve −→ iterative solve
• Krylov subspace methods used most commonly

• Krylov solvers form solution basis from span

{[
dG(Y,t,Y )

dY

]n
∆Y

}
n=0

Bottom Line

Cost of dG(Y,t,Y )

dY
∆Y dominates implicit timestepping cost
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Jacobian Matrix-Vector Multiply Options

How to compute dG(Y,t,Y )

dY
∆Y ?

• Store dG
dY directly (sparse matrix representation)

• Pros: Opens up preconditioning options
• Cons: Is large, expensive to store

• Finite difference matrix-free approximation:

dG(Y,t,Y )

dY
∆Y ≈ G(Y,t,Y + ϵ∆Y )− G(Y,t,Y )

ϵ
• Pros: Just need a residual evaluation, cheap (in programming and computation)
• Cons: Accuracy limited to √

ϵmachine, preconditioning require partial assembly
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Exact Matrix-Free Jacobian via CeedOperator
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• Pros: Exact Jacobian matrix-vector product2

• Cons: Preconditioning requires partial assembly, requires coding Jacobian

2Affect of specific terms may be ignored from the Jacobian. This is done for dτ/dY
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Performance and Results of Flat
Plate Boundary Layer Simulation
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Problem Description

• Flat plate boundary layer with zero pressure gradient
• Reθ ≈ 970 boundary layer at inflow, M ≈ 0.1

• Synthetic turbulence generation (STG) used for inflow structures
• Run at implicit large eddy simulation (ILES) resolution for linears (higher orders
may be DNS level, tbd)

• Test 3 different order elements, Q1, Q2, Q3 tensor-product hexes
• Maintain DOF resolution (DoFs per physical length/ global DoF count)
• Performance results shown for two nodes of ALCF’s Polaris (4× NVIDIA A100
per node)
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Exact Matrix-Free Jacobian vs Sparse
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• Time to assemble dG/dY quite large
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Fluids Performance Analysis
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Results of Flat Plate Boundary Layer
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• Spanwise statistics
implemented to verify
scale-resolving results

• Results not converged, but
show realistic stress profiles

Zaki et al., 2013, From Streaks to Spots and on to Turbulence:
Exploring the Dynamics of Boundary Layer Transition
Schlatter et al., 2010, Assessment of direct numerical
simulation data of turbulent boundary layers
Wu et al., 2017, Transitional–turbulent spots and
turbulent–turbulent spots in boundary layers
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